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Abstract
In some off-resonant cases, the reduced density matrix of two atoms
symmetrically coupled with an optical cavity can very approximately approach
maximally entangled mixed states or maximal Bell violation mixed states in
their evolution. The influence of a phase decoherence on the generation of a
maximally entangled mixed state is also discussed.

PACS numbers: 03.67.−a, 03.65.Ud

Quantum entanglement plays a crucial role in quantum information processes [1]. In the past
few years, much attention has been paid to the preparation of maximally entangled mixed states
[2–4]. The properties of maximally entangled mixed states have been studied by many authors
[5–7]. Maximally entangled mixed states are those states that, for a given mixedness, achieve
the greatest possible entanglement. For two-qubit systems and for various combinations of
entanglement and mixedness measures, the forms of the corresponding maximally entangled
mixed states are different [7]. Using correlated photons from parametric down-conversion,
maximally entangled mixed states in the linear entropy–concurrence plane have been created
and characterized [2]. Generation and characterization of two-photon polarization maximally
entangled mixed states in the linear entropy–concurrence plane have also been carried out,
which is based on the peculiar spatial characteristics of a high brilliance source of entangled
pairs [3]. The preparation of maximally entangled mixed states of two atoms asymmetrically
on-resonance coupled with an optical cavity has also been proposed [4]. Recently, Clark and
Parkins [8] have proposed a scheme to controllably entangle the internal states of two atoms
trapped in a high-finesse optical cavity by employing quantum-reservoir engineering. By
applying the on-resonance atom–cavity couplings which are time dependent, Olaya-Castro
et al have also presented an efficient scheme for controlled generation of entangled states of
two atoms inside an optical cavity [9]. However, truly resonant coupling is not available in a
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realistic physical system. It is desirable to investigate how the off-resonance coupling affects
the preparation of maximally entangled mixed states of two atoms. Based on our previous
analytical results in [10], in which the entanglement behaviors of two atoms inside an optical
cavity in the presence of a phase decoherence have been derived, we can easily analyze the
feasibility for preparing maximally entangled mixed states in such a system. For keeping this
paper self-contained, we briefly outline the basics about two two-level atoms inside an optical
cavity. Here, we investigate two two-level atoms symmetrically coupling to a single-mode
optical cavity and show that in some off-resonant cases, the maximally entangled mixed states
in the plane of concurrence versus linear entropy of two atoms can be very approximately
generated. It is shown that the long-time entanglement behavior of two atoms is sensitive to
the ratio of the detuning and the coupling strength. The influence of the initial mixedness of
the atoms and phase decoherence is also analyzed.

Considering the system that two atoms are trapped inside a single-mode optical cavity
initially prepared in the vacuum state, the Hamiltonian for the system can be given by [11, 12]
(h̄ = 1),

H = ω0

2

2∑
i

σ (i)
z + ωa†a + g

2∑
i

(
aσ (i)

+ + a†σ (i)
−

)
, (1)

where σ (i)
z , σ

(i)
± (i = 1, 2) are atomic operators, ω0 is the atomic transition frequency, g is

the coupling constant of an individual atom to the cavity field and a (a†) is the annihilation
(creation) operator of the cavity field with frequency ω. The generation of the entangled state
in the system (1) in the laboratory has been implemented [12]. Various modifications and
generalizations of the system (1) have been studied for preparing entangled states or realizing
various kinds of quantum information processes [13–16]. It is assumed that the cavity fields
are prepared initially in the vacuum state |0〉, and atom 1 is prepared in the mixed state
λ|e〉〈e| + (1 − λ)|g〉〈g| and atom 2 is in the ground state |g〉, i.e.,

ρ(0) = |0〉〈0| ⊗ [λ|e〉〈e| + (1 − λ)|g〉〈g|] ⊗ |g〉〈g|. (2)

The time evolution of ρ(t) can be derived as follows:

ρ(t) = λ
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}
|0〉〈0| ⊗ |B+〉〈B−|

+
1 − λ

2
|0〉〈0| ⊗ |gg〉〈gg| + h.c., (3)

where � = ω0 − ω is the detuning between the atoms and cavity field, � = (�2 + 8g2)1/2,
and |B±〉 =

√
2

2 (|eg〉 ± |ge〉) are the Bell states. By tracing out the degree of freedom of the
cavity field, we obtain the reduced density matrix ρs(t) describing the subsystem containing
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only two atoms,

ρs(t) = λ

8
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]
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+
λ

4
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{
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+
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4
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(
1 +
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}
|B+〉〈B−| + h.c.. (4)

First, we analyze the feasibility of preparing maximally entangled mixed states of two
atoms in this cavity QED system. The concurrence [17] is adopted to quantify the bipartite
entanglement between the two atoms, and the linear entropy defined by M = 4

3

(
1 − Tr ρ2

s

)
of

the reduced density matrix is used to quantify the mixedness. In the situation with a rational
value of �

�
, the evolving density matrix is periodic. In the case with an irrational value of �

�
,

the evolving state is not periodic. The explicit analytical expression of the concurrence Cs(t)

characterizing the entanglement in ρs(t) can be obtained as

Cs(t) = λ(A2 + B2)
1
2 ,

A = �2

4�2
− 1

4
+

1

4

(
1 − �2

�2

)
cos �t, (5)

B = 1

2

(
1 − �

�

)
sin(� + �)t/2 − 1

2

(
1 +

�

�

)
sin(� − �)t/2.

In the case with λ = 1, the two atoms can be in pure states at some specific times. The
entanglements characterized by the concurrence of those pure states are given by C = | sin �kπ

�
|

which are achieved at discrete times denoted by t = 2kπ/� (k = 1, 2, . . .). If �
�

is a rational
number, the series

∣∣sin �kπ
�

∣∣ (k = 1, 2, . . .) have finite and discrete values. While for the case
that �

�
is an irrational number, the series

∣∣sin �kπ
�

∣∣ (k = 1, 2, . . .) have infinite numbers of
values, and this series can very approximately approach any values between 0 and 1 according
to Hurwitz’s theorem in number theory. It means pure two-qubit states with any desired degree
of entanglement can be very approximately generated for those cases with the irrational values
of �

�
.
In the large detuning limit, i.e., g/|�| � 1, the population of the single-mode cavity field

will be very small in the time evolution, which leads to very small entanglement between the
atoms and the cavity field. Therefore the mixedness of the subsystem containing two atoms
is very small. In the small detuning limit, i.e. |�|/g � 1 but not zero, and simultaneously
�
�

is an irrational number, the trajectories of the reduced density operator of two atoms in the
concurrence versus linear-entropy plane exhibit a kind of ‘quasi-ergodic’ property, roughly
speaking, where ‘quasi-ergodic’ means there are no distinct interspaces in the pattern formed
by the trajectory of the evolving state in the concurrence versus linear-entropy plane.

In figure 1, the concurrence versus mixedness of the two atoms is depicted for different
values of detuning. In the resonant case, the concurrence of the two atoms increases (decreases)
with the increase (decrease) of mixedness of their reduced density matrix. In the resonant
situation, the evolving reduced density matrix ρs(t) in equation (4) cannot become any one of
the maximally entangled mixed states in the plane of linear entropy concurrence. Interestingly,
in the off-resonant case, part of the frontier of the concurrence versus linear entropy can be very
approximately reached by the evolving reduced density matrix of the two atoms. However, the
region in the frontier which can be approximately approached by the evolving reduced density
matrix reduces with the increase of the detuning. Approximately, two atoms can acquire the
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Figure 1. The concurrence versus mixedness of two atoms is depicted. The trajectory is chosen
from the scaled time gt ∈ [0, 50]. The dashed line and dotted line in (a), (b) and (c) represent
the Werner state and the maximally entangled mixed state (the frontier of the concurrence versus
linear entropy) respectively. (a) � = 0; (b) � = 0.5g,�/� = 1/

√
33 (an irrational number);

(c) � = 5g, �/� = 5/
√

33 (an irrational number). In the three cases, λ = 1, i.e. the starting
point is the origin.
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desired pure state concurrence between 1 and 0 for both the small detuning case and large
detuning case under the precondition that �

�
is an irrational number.

From figure 2, we can understand the influence of initial mixedness of two atoms on
the entanglement and mixedness of their evolving reduced density matrix. It is shown that
the range of the frontier that can approximately be approached is reduced when the initial
mixedness of the atoms increases. For the case with λ = 0.6, two atoms can evolve into a
state with smaller mixedness than their initial state which is different from other cases with
λ = 0.9 and λ = 0.7. One can also find that the patterns formed by the trajectories are
mirror symmetric with the horizontal axis labeled by half of the concurrence of the maximally
entangled mixed state corresponding to the initial linear entropy.

Bell’s inequality test with entangled atoms inside a cavity has been extensively studied
[18]. The most commonly discussed Bell inequality is the CHSH inequality [19, 20]. The
CHSH operator reads

B̂ = �a · �σ ⊗ (�b + �b′) · �σ + �a′ · �σ ⊗ (�b − �b′) · �σ , (6)

where �a, �a′, �b, �b′ are unit vectors. In the above notation, the Bell inequality reads

|〈B̂〉| � 2. (7)

The maximal amount of Bell violation of a state ρ is given by [21]

|B|max = 2
√

κ + κ̃, (8)

where κ and κ̃ are the two largest eigenvalues of T †
ρ Tρ . The matrix Tρ is determined completely

by the correlation functions being a 3 × 3 matrix whose elements are (Tρ)nm = Tr(ρσn ⊗σm).
Here, σ1 ≡ σx, σ2 ≡ σy and σ3 ≡ σz denote the usual Pauli matrices. The quantity |B|max is
called the maximal violation measure, which indicates the Bell violation when |B|max > 2 and
the maximal violation when |B|max = 2

√
2. For the density operator ρs in equation (4), κ + κ̃

can be written as follows

κ + κ̃ = ς + max[ς, ζ ], (9)

where

ς = 4g4

�4
(1 − cos �t)2 +

1

4

[(
1 − �

�

)
sin

(� + �)t

2
−

(
1 +

�

�

)
sin

(� − �)t

2

]2

(10)

ζ =
(

�2 + 4g2

�2
+

4g2

�2
cos �t

)2

in the case with λ = 1. In [7], the analytical form of the mixed states which possess the
maximal value of |B|max of two qubits for a given linear entropy has been derived. Here,
part of the frontier of the maximal Bell violation versus the linear entropy can also be very
approximately approached by the evolving state of the two atoms (see figure 3(b)). In
figure 3(a), our calculations show that the two atoms cannot violate the Bell–CHSH inequality
in the resonant case, though they could get entangled. While in the off-resonant case, the
Bell violation of atom 1 and atom 2 can emerge in their long-time evolution, even though the
detuning � is very very small.

If the pure phase decoherence mechanism is considered, the master equation governing
the time evolution of the system under the Markovian approximation is given by [22, 23]

dρ

dt
= −i[H, ρ] − γ

2
[H, [H, ρ]], (11)

5



J. Phys. A: Math. Theor. 42 (2009) 245302 S-B Li and J-B Xu

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

λ=0.6

(c)

 

C

M

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

λ=0.7

(b)

 

C

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

λ=0.9

(a)

C

Figure 2. The concurrence versus mixedness of two atoms is displayed in the cases in which one
of the atoms is initially in three different mixed states: (a) λ = 0.9; (b) λ = 0.7; (c) λ = 0.6. The
trajectories are also chosen from the scaled time gt ∈ [0, 500]. The dashed line and dotted line in
(a), (b) and (c) represent the Werner state and the maximally entangled mixed state, respectively. It
is shown that two atoms can approximately approach part of the maximally entangled mixed states
though the range of the frontier that can be approached is reduced when the initial mixedness of
the atom increases. In the three cases, � = 0.5g, �/� = 1/

√
33 (an irrational number).
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Figure 3. The maximal Bell violation |B|max versus the mixedness of two atoms is displayed for
three different values of the detuning: (a) � = 0; (b) � = 0.01g, �/� = 1

3
√

8889
(an irrational

number); (c) � = 5g, �/� = 5/
√

33 (an irrational number). The trajectory is chosen from the
scaled time gt ∈ [0, 500]. The dashed line represents the frontier of maximal Bell violation versus
the linear entropy, namely, for a given linear entropy, the maximal value of |B|max of two atoms
can not exceed the dashed line. In the three cases, λ = 1.

where γ is the phase decoherence rate. The explicit analytical expression of the concurrence
Cγ (t) characterizing the entanglement of the two atoms in the presence of a phase decoherence
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Figure 4. We display the concurrence versus mixedness of two atoms in the presence of phase
decoherence. The trajectories are chosen from the scaled time gt ∈ [0, 500]. The dashed line
and dotted line in (a), (b) and (c) represent the Werner state and the maximally entangled mixed
state, respectively. (a) � = 0; (b) � = 0.5g, �/� = 1/

√
33 (an irrational number), it can be

observed that an appropriate detuning and decoherence rate can make two atoms possess the ability
to approach the wider region of the frontier; (c) � = g, �/� = 1/3 (a rational number). In the
three cases, γ = 0.01/g and λ = 1.
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can be obtained as

Cγ (t) = λ
(
A2

γ + B2
γ

) 1
2 ,

Aγ = �2

4�2
− 1

4
+

1

4

(
1 − �2

�2

)
cos �t exp

(
−γ t

2
�2

)
,

Bγ = 1

2

(
1 − �

�

)
sin(� + �)t/2 exp

[
−γ t

8
(� + �)2

]

− 1

2

(
1 +

�

�

)
sin(� − �)t/2 exp

[
−γ t

8
(� − �)2

]
, (12)

if the system is initially in the same state as ρ(0) in equation (2). From equation (12), we
can easily know that the phase decoherence does not completely destroy the entanglement
but generates a stationary entangled state of the two atoms. The concurrence Cγ (t) is not
greater than 0.5 in the resonant case. The entanglement of the stationary state decreases with
the increase of the detuning. The phase decoherence changes trajectories in the plane of
concurrence versus linear entropy of the evolving state and makes the trajectories chaotic. In
figure 4, we display the concurrence versus mixedness of the two atoms in the presence of
phase decoherence. The evolving reduced density matrix of the two atoms can approximately
approach a wider region of the maximally entangled mixed states, if both the ratio �/g and
the decoherence rate γ are appropriate.

In summary, we have investigated a possible scheme for generating the maximally
entangled mixed state of two atoms which are symmetrically coupled to a single-mode optical
cavity field. It is shown that the two atoms cannot achieve the maximally entangled mixed state
in the resonant case. In the off-resonant case, the reduced density matrix of the two atoms can
approximately approach the maximally entangled state in their evolution. The distinct roles
of the rational values or irrational values of �

�
in the long-time behaviors of entanglement and

mixedness of the two atoms have been clarified. The influence of the phase decoherence and
the initial mixedness of the atoms is also discussed. These results presented here may have
potential applications in the domain of quantum information and quantum communication and
in the field dealing with the fundamental tests of quantum mechanics.
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